Image Analysis

Rasmus R. Paulsen Tim B. Dyrby DTU Compute

<u>rapa@dtu.dk</u>

http://www.compute.dtu.dk/courses/02502

-3-

Lecture 5 – BLOB analysis and feature based classification

2 DTU Compute, Technical University of Denmark

What can you do after today?

- Calculate the connected components of a binary image. Both using 4-connected and 8-connected neighbours
- Compute BLOB features including area, bounding box ratio, perimeter, center of mass, circularity, and compactness
- Describe a feature space
- Compute blob feature distances in feature space
- Classify binary objects based on their blob features
- Estimate feature value ranges using annotated training data
- Compute a confusion matrix
- Compute rates from a confusion matrix including sensitivity, specificity and accuracy
- Determine and discuss what is the importance of sensitivity and specificity given an image analysis problem

Object recognition

Recognise objects in imagesPut them into different classes

-3-

BLOB – what is it?

BLOB = Binary Large Object

- Group of connected pixels
- BLOB Analysis
 - Connected component analysis
 - Object labelling

- 64

Isolating a BLOB

What we want:

- For each object in the image, a list with its pixels
- How do we get that?
 - Connected component analysis
- Connectivity
 - Who are my neighbors?
 - 4-connected
 - 8-connected

-Qu

Connected component analysis

- Binary image
- Seed point: where do we start?
- Grassfire concept
 - Delete (burn) the pixels we visit
 - Visit all connected (4 or 8) neighbors

-Qu

8

÷2.

BLOBs with 4- and 8- connectivity

A BLOB analysis is performed using both 4- and 8- connectivity. How many BLOBS are found using the two different connectivities?

	\vdash		

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

- An image where each BLOB (component) is labelled
- Each blob now has a unique ID number
- What do we do with these blobs?

Features

Feature

- A prominent or distinctive aspect, quality, or characteristic
- This radio has many good features
- Car (Ford-T) features
 - 4 wheels
 - 2 doors
 - 540 kg
 - 20 hp

-Qu

Feature vector

f=[4, 2, 540, 20]

f=[4, 3, 1100, 90]

- Feature vector
 - Vector with all the features for one object
- Ford-T features
 - 4 wheels
 - 2 doors
 - 540 kg
 - 20 hp
- Ford Fiesta features
 - 4 wheels
 - 3 doors
 - 1100 kg
 - 90 hp

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Feature extractions

- Compute features for each BLOB that can be used to identify it
 - Size
 - Shape
 - Position
- From image operations to mathematical operations
 - Input: a list of pixel positions
 - Output: Feature vector
- First step: remove invalid BLOBS
 - too small or big- using morphological operations for example
 - border BLOBs

Feature vector = $[2,1,\ldots,3]$

Feature vector = $[4,7,\ldots,0]$

BLOB Features

Area

- number of pixels in the BLOB
- Can be used to remove noise (small BLOBS)

BLOB Features

Bounding box

- Minimum rectangle that contains the BLOB
- Height: $y_{\text{max}} y_{\text{min}}$
- Width: $x_{\max} x_{\min}$
- Bounding box ratio:

 $\frac{y_{\max} - y_{\min}}{x_{\max} - x_{\min}}$

- tells if the BLOB is elongated

BLOB Features

Bounding box - Bounding box area: $(y_{max} - y_{min}) \cdot (x_{max} - x_{min})$ - Compactness of BLOB $Compactness = \frac{BLOB Area}{(y_{max} - y_{min}) \cdot (x_{max} - x_{min})}$

чðа

2024

BLOB Features

Bounding box ratio

Bounding box height divided by the width

BLOB Features

Center of mass (x_c, y_c)

2024

÷2.

BLOB Center of Mass

The smallest BLOB is found using 4connectivity. What is the center of mass of this BLOB. The image has origin (0,0) and uses a (x,y) coordinate system.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

 \otimes

÷

BLOB Features

Perimeter

- Length of perimeter
- How can we compute that?
- In practice, it is computed differently and more accurately

 $\sum_{i=1}^{n} ((f(x,y) \oplus SE) - f(x,y))$

BLOB Features - circularity

	How much does it look like a circle?				
Circle like	Circle - Area $A = \pi r^2$ - Perimeter $P = 2\pi r$				
	 New object assumed to be a circle Measured perimeter Pm Measured area Am 				
	Estimate perimeter from (measured) area – Estimated perimeter $P_e = 2\sqrt{\pi A_m}$				
Not circle like					

2024

BLOB Features - circularity

Compare the perimeters

- Measured perimeter P_m
- Estimated perimeter $P_e = 2\sqrt{\pi A_m}$

Circle like

Circularity 1:

Circularity
$$= \frac{P_m}{P_e} = \frac{P_m}{2\sqrt{\pi A_m}}$$

Not circle like

JIL

UIU

BLOB Features - circularity

Compare the perimeters

- Measured perimeter P_m
- Estimated perimeter $P_e = 2\sqrt{\pi A_m}$

Circle like

Circularity:

Circularity
$$= \frac{P_m}{P_e} = \frac{P_m}{2\sqrt{\pi A_m}}$$

■ This measure will normally be ≥ 1

-2e

BLOB Features – circularity inverse

Compare the perimeters

- Measured perimeter P_m
- Estimated perimeter $P_e = 2\sqrt{\pi A_m}$

Circle like

Circularity (inverse):

Not circle like

Circularity inverse
$$=\frac{P_e}{P_m}=\frac{2\sqrt{\pi A_m}}{P_m}$$

This measure will normally be ≤ 1

After feature extraction

Area, compactness, circularity etc calculated for all BLOB

One feature vector per blob

BLOB Classification

- Classification
 - Put a BLOB into a class

Classes are normally pre-defined

- Car
- Bus
- Motorcycle
- Scooter

Object recognition

-Qu

Object recognition: Circle example

#3#2#1 ×	BLOB number	Circu- Iarity	Area (pixels)
×	1	0.31	6561
#5 #5 #7	2	0.40	6544
	3	0.98	890
	4	0.97	6607
	5	0.99	6730
x	6	0.52	6611
	7	0.75	2073

Which objects are circles?

Circle classification

- Two classes:
 - Circle
 - Not-circle

Lets make a model of a proto-type circle

-2e

Circle classification

Proto-type circle

- Circularity : 1
- Area: 6700

Feature Space

Feature space

Proto-type circle
Circularity : 1
Area: 6700
Some slack is added to allow non-perfect circles
Circularity: 1 +/- 0.15

-Qu

Feature space - distances

Blob 1: circularity: 0.31, Area : 6561

$$D = \sqrt{(0.31 - 1)^2 + (6561 - 6700)^2} \leftarrow$$

Dominates all! - normalisation needed

BLOB Classification

A BLOB analysis using 8-connectivity has been performed on the image seen in Figure 12 and the five found BLOBs have been marked with numbers. The BLOB features area and compactness have been computed for the five BLOBs. A reference BLOB has an area of 10 pixels and a compactness of 0.5. The Euclidean distance in feature space has been computed between the five BLOBs and the reference BLOB. Which of the five BLOBs has the minimum distance?

 \otimes

BLOB Classification

A BLOB analysis using 8-connectivity has been performed on the image seen in Figure 12 and the five found BLOBs have been marked with numbers. The BLOB features area and compactness have been computed for the five BLOBs. A reference BLOB has an area of 10 pixels and a compactness of 0.5. The Euclidean distance in feature space has been computed between the five BLOBs and the reference BLOB. Which of the five BLOBs has the minimum distance?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

DTU Compute, Technical University of Denmark

Image Analysis

2024

÷ŷ.

Nuclei classification

DAPI image

- Two classes
 - Single nuclei
 - Noise
 - Multiple nuclei together
 - Debris
 - Other noise

чò,

Training and annotation

Selection of true single nuclei marked

ThresholdingBLOB AnalysisCircularity

– Area

Training data - analysis

Feature ranges

Feature	Min	Max
Area	50	110
Circularity	0.87	1.05

 \Rightarrow

47 DTU Compute, Technical University of Denmark

Using the classifier

- Threshold input image
 - Morphological opening (SE 5x5)
 - Morphological closing (SE 5x5)
 - **BLOBs found using 8-neighbours**
 - Border BLOBS removed
- **BLOB** features computed
 - Area + circularity
- BLOBs with features inside the acceptance range are single-nuclei

Using the classifier

۰ŷe

49 DTU Compute, Technical University of Denmark

How well does it work?

We say we have a great algorithm! Strangely the doctor/biochemist do not trust this statement! – They need numbers! How do we report the performance?

Creating ground truth – expert annotations

Found single nuclei

Expert opinion on true single nuclei Red markings: Single nuclei Not marked: Noise

Four cases

- **True Positive (TP):** A nuclei is classified as a nuclei
- True Negative (TN): A noise object is classified as noise object
- **False Positive (FP):** A noise object is classified as a nuclei
- False Negative (FN): A nuclei is classified as a noise object

Found single nuclei 52 DTU Compute, Technical University of Denmark

	Predicted as noise	Predicted as single- nuclei
Actual noise		
Actual single-nuclei		

	Predicted as noise	Predicted as single- nuclei
Actual noise	TN=19	
Actual single-nuclei		

	Predicted as noise	Predicted as single- nuclei
Actual noise	TN=19	
Actual single-nuclei		TP=51

	Predicted as noise	Predicted as single- nuclei
Actual noise	TN=19	FP=2
Actual single-nuclei		TP=51

	Predicted as noise	Predicted as single- nuclei
Actual noise	TN=19	FP=2
Actual single-nuclei	FN=5	TP=51

Something simpler?

Accuracy

Tells how often the classifier is correct

Accuracy = $\frac{TP+TN}{N}$

N is the total number of annotated objects

N = TN + TP + FP + FN

2024

59

 $\cdot \geq 1$

÷2.

60 DTU Compute, Technical University of Denmark

Accuracy from Confusion Matrix				
			42%	0%
			65%	0%
	Predicted as noise	Predicted as single-	77%	0%
Actual noise	TN=19	FP=2	9 1%	
Actual single-	FN=5	TP=51		100%
nuclei			97%	0%
	Start the presenta	ation to see live conter	nt. For screen share software, share the entire screen. Get help at pollev.com/app	

 \Rightarrow

61 DTU Compute, Technical University of Denmark

True positive rate (sensivity)

How often is a positive predicted when it actually is positive

÷2.

DTU

 \otimes

Specificity

How often is a negative predicted when it actually is negative

2024

÷2.

DTU

 \otimes

 \Rightarrow

Optimising the classification

- Changing the classification limits
- The rates will be changed:
 - Accuracy
 - Sensitivity
 - Specificity
- Very dependent on the task what is optimal

Dependencies

Increasing true positive rate

- Increased false positive rate
- Decreased precision

-3-

Example – cell analysis

We want only single-nuclei cells

For further analysis

We do not want to do an analysis of a noise object

We are not interested in the true number of single nuclei

-Şe

÷ŷ,

 \cdot

75 DTU Compute, Technical University of Denmark

•0

Advanced classification

- Fitting more advanced functions to the samples
- **Multivariate Gaussians**
- Mahalanobis distances

Feature Engineering vs. Deep learning

Until around 5-7 years ago feature engineering was the way to go Now deep learning beats everything However – feature engineering is still important

Feature engineering

Given a classification problem

- Cars vs. Pedestrians

Use background knowledge to select relevant features

- Area
- Shape
- Appearance
- Use multivariate statistics to classify
- Depending on the selected features

Deep learning

You start with a dummy classifier Feed it with lots and lots of data with given labels The network learns the optimal features Layer/network engineering

• 🌣

Feature Engineering vs. Deep learning

Deep Learning

- When you have lot of annotated data
- Where it is not clear what features work

Manual features

- When you have limited data
- When it is rather obvious what features can discriminate

2024

DTU Compute

DTU Compute

Next week

Pixel classificationAdvanced classification

÷\$1