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Lecture 5 – BLOB analysis and feature 
based classification
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What can you do after today?

 Calculate the connected components of a binary image. Both 
using 4-connected and 8-connected neighbours

 Compute BLOB features including area, bounding box ratio, 
perimeter, center of mass, circularity, and compactness

 Describe a feature space
 Compute blob feature distances in feature space
 Classify binary objects based on their blob features
 Estimate feature value ranges using annotated training data
 Compute a confusion matrix
 Compute rates from a confusion matrix including sensitivity, 

specificity and accuracy
 Determine and discuss what is the importance of sensitivity and 

specificity given an image analysis problem
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Object recognition
 Recognise objects in images 
 Put them into different classes
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BLOB – what is it?
 BLOB = Binary Large Object

– Group of connected pixels
 BLOB Analysis

– Connected component analysis
– Object labelling

.

.

.
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Isolating a BLOB
 What we want:

– For each object in the image, a 
list with its pixels

 How do we get that?
– Connected component analysis

 Connectivity
– Who are my neighbors?
– 4-connected
– 8-connected

4-connected

8-connected Image



DTU Compute

2024Image Analysis7 DTU Compute, Technical University of Denmark

Connected component analysis
 Binary image 
 Seed point: where do we 

start?
 Grassfire concept

– Delete (burn) the pixels we 
visit

– Visit all connected (4 or 8) 
neighbors

3
4

1
2

4-connected

(1,1) x

Y
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The result of connected component analysis
 An image where each BLOB 

(component) is labelled
 Each blob now has a unique ID 

number
 What do we do with these blobs?

1

2

3

…
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Features
 Feature

– A prominent or distinctive 
aspect, quality, or 
characteristic

– This radio has many good 
features

 Car (Ford-T) features
– 4 wheels
– 2 doors
– 540 kg
– 20 hp

http://upload.wikimedia.org/wikipedia/commons/1/15/Late_model_Ford_Model_T.jpg
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Feature vector
 Feature vector

– Vector with all the features for one object
 Ford-T features

– 4 wheels
– 2 doors
– 540 kg
– 20 hp

 Ford Fiesta features
– 4 wheels
– 3 doors
– 1100 kg
– 90 hp

f=[4, 2, 540, 20]

f=[4, 3, 1100, 90]

http://upload.wikimedia.org/wikipedia/commons/1/15/Late_model_Ford_Model_T.jpg
http://en.wikipedia.org/wiki/File:Ford_Fiesta_2003_RF_14dec2006.jpg
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Feature extractions
 Compute features for each BLOB that can be used to 

identify it
– Size
– Shape
– Position

 From image operations to mathematical operations 
– Input: a list of pixel positions
– Output: Feature vector 

 First step: remove invalid BLOBS 
– too small or big- using morphological 

operations for example
– border BLOBs

Feature vector = [2,1,…,3]

Feature vector = [4,7,…,0]
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BLOB Features
 Area  

– number of pixels in the BLOB
– Can be used to remove noise (small 

BLOBS)

One BLOB
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BLOB Features
 Bounding box

– Minimum rectangle that contains the 
BLOB

– Height: 𝑦𝑦max − 𝑦𝑦min
– Width: 𝑥𝑥max − 𝑥𝑥min

– Bounding box ratio:

– tells if the BLOB is elongated
One BLOB

𝑦𝑦max − 𝑦𝑦min
𝑥𝑥max − 𝑥𝑥min(𝑥𝑥max,𝑦𝑦max)

(𝑥𝑥min,𝑦𝑦min)
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BLOB Features
 Bounding box

– Bounding box area:

– Compactness of BLOB

One BLOB

(𝑥𝑥max,𝑦𝑦max)

(𝑥𝑥min,𝑦𝑦min) (𝑦𝑦max − 𝑦𝑦min) ⋅ (𝑥𝑥max − 𝑥𝑥min)

Compactness = BLOB Area
(𝑦𝑦max−𝑦𝑦min)⋅(𝑥𝑥max−𝑥𝑥min)

Not compact Compact
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BLOB Features
 Bounding box ratio

– Bounding box height divided by the width

One BLOB

(𝑥𝑥max,𝑦𝑦max)

(𝑥𝑥min,𝑦𝑦min)
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BLOB Features
 Center of mass 

(𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐)

(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)

(𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐)

𝑥𝑥𝑐𝑐 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

𝑥𝑥𝑖𝑖

𝑦𝑦𝑐𝑐 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

𝑦𝑦𝑖𝑖
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BLOB Features
 Perimeter

– Length of perimeter
– How can we compute that?

 In practice, it is computed differently 
and more accurately

One BLOB

�( 𝑓𝑓 𝑥𝑥,𝑦𝑦 ⊕ SE − 𝑓𝑓 𝑥𝑥,𝑦𝑦 )
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BLOB Features - circularity

 How much does it look like a circle?

 Circle
– Area 𝐴𝐴 = 𝜋𝜋𝑟𝑟2
– Perimeter 𝑃𝑃 = 2𝜋𝜋𝑟𝑟

 New object assumed to be a circle
– Measured perimeter 𝑃𝑃𝑚𝑚
– Measured area 𝐴𝐴𝑚𝑚

 Estimate perimeter from (measured) area
– Estimated perimeter 𝑃𝑃𝑒𝑒 = 2 𝜋𝜋𝐴𝐴𝑚𝑚

Circle like

Not circle like
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BLOB Features - circularity

 Compare the perimeters
– Measured perimeter 𝑃𝑃𝑚𝑚
– Estimated perimeter 𝑃𝑃𝑒𝑒 = 2 𝜋𝜋𝐴𝐴𝑚𝑚

 Circularity 1:

Circularity =
𝑃𝑃𝑚𝑚
𝑃𝑃𝑒𝑒

=
𝑃𝑃𝑚𝑚

2 𝜋𝜋𝐴𝐴𝑚𝑚

Circle like

Not circle like
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BLOB Features - circularity

 Compare the perimeters
– Measured perimeter 𝑃𝑃𝑚𝑚
– Estimated perimeter 𝑃𝑃𝑒𝑒 = 2 𝜋𝜋𝐴𝐴𝑚𝑚

 Circularity:

Circularity =
𝑃𝑃𝑚𝑚
𝑃𝑃𝑒𝑒

=
𝑃𝑃𝑚𝑚

2 𝜋𝜋𝐴𝐴𝑚𝑚

 This measure will normally be ≥1

Circle like

Not circle like
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BLOB Features – circularity inverse

 Compare the perimeters
– Measured perimeter 𝑃𝑃𝑚𝑚
– Estimated perimeter 𝑃𝑃𝑒𝑒 = 2 𝜋𝜋𝐴𝐴𝑚𝑚

 Circularity (inverse):

Circularity inverse =
𝑃𝑃𝑒𝑒
𝑃𝑃𝑚𝑚

=
2 𝜋𝜋A𝑚𝑚

𝑃𝑃𝑚𝑚

 This measure will normally be ≤1 

Circle like

Not circle like
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After feature extraction

Feature vector = [2,1,…,3]

Feature vector = [4,7,…,0]

Area, compactness, circularity etc calculated for all BLOB

One feature vector per blob
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BLOB Classification
 Classification

– Put a BLOB into a class

 Classes are normally pre-defined
– Car
– Bus
– Motorcycle
– Scooter

 Object recognition
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Object recognition: Circle example

Which objects are circles?



DTU Compute

2024Image Analysis35 DTU Compute, Technical University of Denmark

Circle classification

 Two classes:
– Circle
– Not-circle

 Lets make a model of a 
proto-type circle
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Circle classification

 Proto-type circle
– Circularity : 1
– Area: 6700
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Feature Space
Proto-type circle

Objects in here are classified as circles
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Feature space

 Proto-type circle
– Circularity : 1
– Area: 6700

 Some slack is added to 
allow non-perfect circles
– Circularity: 1 +/- 0.15
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Feature space - distances

 How do we decide if an 
object is inside the 
circle?

 Feature space distance
 Euclidean distance in 

features space

D = (0.31 − 1)2+(6561 − 6700)2

Blob 1: circularity: 0.31, Area : 6561

Dominates all! – normalisation needed
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Cell classification

UV Microscopy Fluorescence Microscopy (DAPI)

Single Nuclei Multiple Nuclei

Images from ChemoMetec A/S
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Nuclei classification
DAPI image
 Two classes

– Single nuclei
– Noise

 Multiple nuclei together
 Debris
 Other noise
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Training and annotation
 Selection of true 

single nuclei marked

 Thresholding
 BLOB Analysis

– Circularity
– Area
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Training data - analysis

Probably outliers

Acceptance area
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Feature ranges

Feature Min Max
Area 50 110
Circularity 0.87 1.05



DTU Compute

2024Image Analysis48 DTU Compute, Technical University of Denmark

Using the classifier

DAPI input image

 Threshold input image
 Morphological opening (SE 5x5)
 Morphological closing (SE 5x5)
 BLOBs found using 8-neighbours
 Border BLOBS removed
 BLOB features computed

– Area + circularity
 BLOBs with features inside the 

acceptance range are single-nuclei
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Using the classifier

DAPI input image Found single nuclei

Feature Min Max

Area 50 110

Circularity 0.87 1.05
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How well does it work?
We say we have a great

algorithm!
 Strangely the 

doctor/biochemist do not 
trust this statement!
– They need numbers!

How do we report the 
performance?
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Creating ground truth – expert annotations

Found single nuclei Expert opinion on true single nuclei

Red markings: Single nuclei

Not marked: Noise
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Four cases
 True Positive (TP): A nuclei is classified as a nuclei
 True Negative (TN): A noise object is classified as noise object
 False Positive (FP): A noise object is classified as a nuclei
 False Negative (FN): A nuclei is classified as a noise object

Found single nuclei
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Confusion matrix

Predicted as noise Predicted as single-
nuclei

Actual noise
Actual single-nuclei
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Confusion matrix

Predicted as noise Predicted as single-
nuclei

Actual noise TN=19
Actual single-nuclei
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Confusion matrix

Predicted as noise Predicted as single-
nuclei

Actual noise TN=19
Actual single-nuclei TP=51
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Confusion matrix

Predicted as noise Predicted as single-
nuclei

Actual noise TN=19 FP=2
Actual single-nuclei TP=51
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Confusion matrix

Predicted as noise Predicted as single-
nuclei

Actual noise TN=19 FP=2
Actual single-nuclei FN=5 TP=51

Something simpler?
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Accuracy
 Tells how often the classifier is correct

 N is the total number of annotated objects

Accuracy=𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁
𝑁𝑁

𝑁𝑁 = 𝑇𝑇𝑁𝑁 + 𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑁𝑁
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True positive rate (sensivity)
 How often is a positive predicted when it actually is 

positive

Sensivity= 𝑇𝑇𝑇𝑇
𝐹𝐹𝑁𝑁+𝑇𝑇𝑇𝑇 All the experts true single-nuclei
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Specificity
 How often is a negative predicted when it actually is 

negative

Specificity= 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇 All the experts true noise objects
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Optimising the classification
 Changing the 

classification limits
 The rates will be

changed:
– Accuracy
– Sensitivity
– Specificity
– …

 Very dependent on the 
task what is optimal
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Dependencies
 Increasing true positive rate

– Increased false positive rate
– Decreased precision
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Example – cell analysis
 We want only single-nuclei cells

– For further analysis

 We do not want to do an analysis of a noise object

 We are not interested in the true number of single 
nuclei 



DTU Compute

2024Image Analysis73 DTU Compute, Technical University of Denmark



DTU Compute

2024Image Analysis74 DTU Compute, Technical University of Denmark



DTU Compute

2024Image Analysis75 DTU Compute, Technical University of Denmark



DTU Compute

2024Image Analysis76 DTU Compute, Technical University of Denmark

Advanced classification
 Fitting more advanced functions to the samples
 Multivariate Gaussians
 Mahalanobis distances
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Feature Engineering vs. Deep learning
Until around 5-7 

years ago feature 
engineering was the 
way to go

Now deep learning 
beats everything

However – feature 
engineering is still 
important
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Feature engineering
 Given a classification problem

– Cars vs. Pedestrians
 Use background knowledge to 

select relevant features
– Area
– Shape
– Appearance
– …

 Use multivariate statistics to 
classify

 Depending on the selected 
features
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Deep learning
 You start with a dummy 

classifier
 Feed it with lots and lots

of data with given labels
 The network learns the 

optimal features
 Layer/network engineering
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Feature Engineering vs. Deep learning
Deep Learning
When you have lot 

of annotated data
Where it is not clear 

what features work

Manual features
When you have 

limited data
When it is rather 

obvious what 
features can 
discriminate
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Next week
 Pixel classification
 Advanced classification
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