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Lecture 5 - BLOB analysis and feature
based classification
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What can you do after today?

Calculate the connected components of a binary image. Both
using 4-connected and 8-connected neighbours

Compute BLOB features including area, bounding box ratio,
perimeter, center of mass, circularity, and compactness

Describe a feature space

Compute blob feature distances in feature space

Classify binary objects based on their blob features
Estimate feature value ranges using annotated training data
Compute a confusion matrix

Compute rates from a confusion matrix including sensitivity,
specificity and accuracy

Determine and discuss what is the importance of sensitivity and
specificity given an image analysis problem

DTU Compute, Technical University of Denmark Image Analysis 2024
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Object recognition

B Recognise objects in images
B Put them into different classes
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BLOB - what is it?

m BLOB = Binary Large Object
— Group of connected pixels
m BLOB Analysis
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Isolating a BLOB

B What we want:

— For each object in the image, a
. list with its pixels

B How do we get that?

— Connected component analysis
B Connectivity

- Who are my neighbors?

- 4-connected

- 8-connected

4-connected

8-connected Image

6 DTU Compute, Technical University of Denmark Image Analysis 2024
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Connected component analysis

B Binary image
- . X B Seed point: where do we
) start?
O concept
— Delete (burn) the pixels we
visit
— Visit all connected (4 or 8)
neighbors

4-connected

4

< <

2
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BLOBs with 4- and 8- connectivity

A BLOB analysis is performed using both
4- and 8- connectivity. How many BLOBS
are found using the two different
connectivities?

4 and 5

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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BLOBs with 4- and 8- connectivity

A BLOB analysis is performed using both
4- and 8- connectivity. How many BLOBS
are found using the two different
connectivities?

Start the presentation to see live content. For screx share the er
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BLOBs with 4- and 8- connectivity

A BLOB analysis is performed using both
4- and 8- connectivity. How many BLOBS
are found using the two different
connectivities?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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The result of connected component analysis

. B An image where each BLOB
. .. (component) is labelled

. B Each blob now has a unique ID
number

| . . . B What do we do with these blobs?

11 DTU Compute, Technical University of Denmark Image Analysis 2024
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Features

B Feature

— A prominent or distinctive
aspect, quality, or
characteristic

— This radio has many good
features

m Car (Ford-T) features
- 4 wheels
— 2 doors
- 540 kg
- 20 hp

12 DTU Compute, Technical University of Denmark Image Analysis 2024


http://upload.wikimedia.org/wikipedia/commons/1/15/Late_model_Ford_Model_T.jpg
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Feature vector

B Feature vector

— Vector with all the features for one object
B Ford-T features

- 4 wheels
— 2 doors
- 540 kg
f=[4, 2, 540, 20] - 20 hp
B Ford Fiesta features
i R VIEES
- 3 doors
- 1100 kg
- 90 hp

f=[4, 3, 1100, 90]

13 DTU Compute, Technical University of Denmark Image Analysis 2024


http://upload.wikimedia.org/wikipedia/commons/1/15/Late_model_Ford_Model_T.jpg
http://en.wikipedia.org/wiki/File:Ford_Fiesta_2003_RF_14dec2006.jpg
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Visual features to determine car type
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Feature extractions

. B Compute features for each BLOB that can be used to
. . identify it

. - Size
r . P . - Shape

— Position
- = B From image operations to mathematical operations
® o ' — Input: a list of pixel positions
’ . - Feature vector

B First step: remove invalid BLOBS

— too small or big- using morphological
operations for example

— border BLOBs

Feature vector =[2,1,...,3]

Feature vector = [4,7,...,0]

15 DTU Compute, Technical University of Denmark Image Analysis 2024
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BLOB Features

B Area
— number of pixels in the BLOB

— Can be used to remove noise (small
BLOBS)

One BLOB

16 DTU Compute, Technical University of Denmark Image Analysis 2024
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BLOB Features

(xmin» ymin)

(xmaxr ymax]

One BLOB

17 DTU Compute, Technical University of Denmark

Bounding box

- Minimum rectangle that contains the
BLOB

- Height: ¥Ymax — Ymin

— Bounding box ratio:

Ymax — Ymin

Xmax — Xmin

- tells if the BLOB is elongated

Image Analysis 2024
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BLOB Features

B Bounding box
- Bounding box area:

(xmin' ymin) (ymax - ymin) ) (xmax - xmin)

— Compactness of BLOB

BLOB Area

(Ymax—Ymin)' (*max—Xmin)

Not compact Compact

Compactness =

(xmaxr ymax]

One BLOB

18 DTU Compute, Technical University of Denmark Image Analysis 2024
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BLOB Features

B Bounding box ratio
- Bounding box height divided by the width

(xmin» ymin)

(xmaxr ymax]

One BLOB

19 DTU Compute, Technical University of Denmark Image Analysis 2024
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BLOB Features

B Center of mass (x.,y,)

1 N
\ Ve = NZ Vi
(xi, i) i=1

20 DTU Compute, Technical University of Denmark Image Analysis
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BLOB Center of Mass

(7,4.5)

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Image Analysis
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BLOB Center of Mass

The smallest BLOB is found using 4-
connectivity. What is the center of mass of
this BLOB. The image has origin (0,0) and
uses a (x,y) coordinate system.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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BLOB Center of Mass

The smallest BLOB is found using 4-
connectivity. What is the center of mass of
this BLOB. The image has origin (0,0) and
uses a (x,y) coordinate system.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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BLOB Features

B Perimeter
- Length of perimeter
- How can we compute that?

B In practice, it is computed differently
and more accurately

Y (Fx ) @ SE) = £, )

One BLOB

24 DTU Compute, Technical University of Denmark Image Analysis 2024
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BLOB Features - circularity

B How much does it look like a circle?

m Circle

— Area A = nr?
— Perimeter P = 2nr

Circle like

B New object assumed to be a circle
- Measured perimeter B,
- Measured area 4,,

B Estimate perimeter from (measured) area
- Estimated perimeter P, = 2,/74,,

Not circle like

25 DTU Compute, Technical University of Denmark Image Analysis 2024
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BLOB Features - circularity

B Compare the perimeters
- Measured perimeter B,

- Estimated perimeter P, = 2,/74,,

Circle like m Circularity 1:

Circularity = — =

Not circle like

26 DTU Compute, Technical University of Denmark Image Analysis 2024
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Circularity math
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Circularity math

Start the presentation to s
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live content. For screen share

reen. Get help at pollev.com/app
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Circularity math

ve content. For screen sh

share the entire
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BLOB Features - circularity

B Compare the perimeters
- Measured perimeter B,

- Estimated perimeter P, = 2,/74,,

Circle like m Circularity:

P P
Circularity = — = =

Fe 2mA,,

B This measure will normally be =21

Not circle like

30 DTU Compute, Technical University of Denmark Image Analysis
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BLOB Features - circularity inverse

B Compare the perimeters
- Measured perimeter B,

- Estimated perimeter P, = 2,/74,,

Circle like ® Circularity (inverse):

2./TA,,

P
Pn Pn

Circularity inverse =

B This measure will normally be <1

Not circle like

31 DTU Compute, Technical University of Denmark Image Analysis
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After feature extraction

Area, compactness, circularity etc calculated for all BLOB

Feature vector = [2,1,...,3]

Feature vector = [4,7,...,0]

One feature vector per blob

32 DTU Compute, Technical University of Denmark Image Analysis
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BLOB Classification

B Classification
— Put a BLOB into a cl/ass

B (/asses are normally pre-defined
- Car
- Bus
— Motorcycle
— Scooter

B Object recognition

33 DTU Compute, Technical University of Denmark
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Object recognition: Circle example

number larity (pixels)

1 0.99 | 6730
6611
2073

Which objects are circles?

34 Image Analysis 2024
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Circle classification

B Two classes:
— Circle
— Not-circle

B Lets make a model of a
circle

35 DTU Compute, Technical University of Denmark Image Analysis 2024
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Circle classification

B Proto-type circle
— Circularity : 1
— Area: 6700

36 DTU Compute, Technical University of Denmark Image Analysis 2024
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Feature Space

Proto-type circle

Objects in here are classified as circles

37 Image Analysis 2024
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Feature space

Feature 2: Area

38

B Proto-type circle
— Circularity : 1
— Area: 6700

B Some slack is added to
allow non-perfect circles
— Circularity: 1 +/- 0.15

Image Analysis 2024
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Feature space - distances

Feature 2: Area

B How do we decide if an
object is inside the
circle?

B Feature space distance

B Euclidean distance in
features space

Blob 1: circularity: 0.31, Area : 6561

D = /(031 — )2 #(6561 — 6700)?

39 Image Analysis 2024
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BLOB Classification

A BLOD analvsis using S-connectivity has e
in Figure 12 and the five found BLOBs have
The BLOB features area and
BLOBs. A reference BLOB has

i1 | £ "'\' II 1] 'll-' nee imn mean
the five BLOBs and the reference

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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BLOB Classification

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Image Analysis
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BLOB Classification

n
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Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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Ce” CIaSS|flcat|On Single Nuclei Multiple Nuclei

) -

UV Microscopy Fluorescence Microscopy (DAPI)

Images from ChemoMetec A/S

43 DTU Compute, Technical University of Denmark Image Analysis 2024
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Nuclei classification
¢ ., ~ <+, _ MmDAPI image

LT e e e B Two classes
TS ., - Single nuclei
¢ - * o v A —_—
e - .
- J‘.'I ® . .
. l:‘ ‘, coe - n
° . '.:J' ) :. l. "
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Training and annotation

. ‘°* o B Selection of true
. - I
8 ¢ . single nuclei marked
. |
« . - BEThresholding
| ’ o B BLOB Analysis
) I . — Circularity
" " - Area
JQ qu -
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Training data - analysis

Acceptance area

11 1.2 1.3

Circularity

Probably outliers

46 Image Analysis
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Feature ranges

Area

Circularity

11 1.2 1.3 1.4

Circularity
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Using the classifier

-.‘b P
i .o’..' a. -
E &,

» ' @
DAPI input image
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B Threshold input image

B Morphological opening (SE 5x5)
B Morphological closing (SE 5x5)
B BLOBs found using 8-neighbours
B Border BLOBS removed

B BLOB features computed
— Area + circularity

B BLOBs with features inside the
acceptance range are single-nuclei

ty of Denmark Image Analysis 2024
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Using the classifier
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DAPI input image Found single nuclei

Circularity
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How well does it work?

50 DTU Compute, Technical Universi

B We say we have a

R algorithm!

B Strangely the

. doctor/biochemist do not

~. trust this statement!
- They need numbers!

B How do we report the
performance?

ty of Denmark Image Analysis 2024
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Creating ground truth — expert annotations
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Four cases

B True Positive (TP): A nuclei is classified as a nuclei

B True Negative (TN): A noise object is classified as noise object
N A noise object is classified as a nuclei

B False Negative (FN): A nuclei is classified as a noise object
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Confusion matrix

Actual noise

Actual single-nuclei
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Confusion matrix

Actual noise

Actual single-nuclei
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Confusion matrix

Actual noise

Actual single-nuclei
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Confusion matrix

Actual noise

Actual single-nuclei
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Confusion matrix

Actual noise

Actual single-nuclei

57 DTU Compute, Technical University of Denmark
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Accuracy

B Tells how often the classifier is correct

P+TN

T
AcCcuracy=

H N is the total number of annotated objects

N=TN+TP+ FP+ FN

58 DTU Compute, Technical University of Denmark Image Analysis
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Accuracy from Confusion Matrix

Actual
noise

Actual
single-
nuclei

97%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

59 DTU Compute, Technical University of Denmark
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Accuracy from Confusion Matrix

Actual
noise
Actual
single-
nuclei

Predicted
as noise

TN=19

FN=5

Predicted
as single-
nuclei

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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Accuracy from Confusion Matrix

Actual
noise
Actual
single-
nuclei

Predicted
as noise

TN=19

FN=5

Predicted
as single-
nuclei

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pellev.com/app
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True positive rate (sensivity)

B How often is a positive predicted when it actually is
positive

Sensivity=——

+TP All the experts true single-nuclei
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Sensitivity from Confusion Matrix

Actual
noise

Actual
single-
nuclei

93%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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Sensitivity from Confusion Matrix

Predicted | Predicted
as noise as single-
nuclei
Actual TN=19
noise
Actual FN=5
single-
nuclei

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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Sensitivity from Confusion Matrix

Predicted
as single-
nuclei

Actual
noise
Actual
single-
nuclei

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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Specificity

B How often is a negative predicted when it actually is
negative

TN

Specificity=TN

+FP All the experts true noise objects
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True positive rate

Start the presentation to

67 DTU Compute, Technical University of Denmark

ive content. For scr
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True positive rate

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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True positive rate

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Image Analysis
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Optimising the classification

B Changing the
classification limits

B The rates will be
changed:

— Accuracy

— Sensitivity

— Specificity

B Very dependent on the
task what is optimal

Circularity

70 Image Analysis 2024
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Dependencies

B Increasing true positive rate
— Increased
— Decreased

at

1.1

Circularity

1.2

1.3

Image Analysis

2024
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Example — cell analysis

B We want

single-nuclei cells

— For further analysis

m We

H We are
nuclei

want to do an analysis of a noise object

interested in the true number of single

72 DTU Compute, Technical University of Denmark Image Analysis 2024
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What measure is the most important?

Low false positives

®m We want only single-nuclei cells High true positives
— For further analysis

B We do not want to do an analysis
of noise objects

® We are not interested in the true
number of single nuclei
High true negatives

Low false negatives

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

73 DTU Compute, Technical University of Denmark Image Analysis
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What measure is the most important?

m We want only single-nuclei cells
- For further analysis

B We do not want to do an analysis
of noise objects

®m We are not interested in the true
number of single nuclei

@ Low false positives

High true positives

High true negatives

Low false negatives

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

74
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What measure is the most important?

®m We want only single-nuclei cells
- For further analysis

B We do not want to do an analysis
of noise objects

®m We are not interested in the true
number of single nuclei

@ Low false positives

High true positives

High true negatives

Low false negatives

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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Advanced classification

B Fitting more advanced functions to the
B Multivariate Gaussians
B Mahalanobis distances

1.1 1.2

76

samples

1.3

Circularity

Image Analysis
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Feature Engineering vs. Deep learning

77

B Until around 5-7
years ago
was the
way to go
B Now deep learning
beats everything

B However - feature
engineering is still
iImportant

Image Analysis 2024
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Feature engineering

B Given a classification problem
— Cars vs. Pedestrians

B Use background knowledge to
select relevant features
— Area
— Shape
— Appearance

Circularity —

B Use multivariate statistics to
classify

B Depending on the selected
features

78 Image Analysis 2024
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Deep learning

79 DTU Compute, Technical University of Denmark

B You start with a dummy
classifier

B Feed it with lots and lots
of data with given labels

B The network learns the
optimal features

B Layer/network engineering

Image Analysis 2024
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Feature Engineering vs. Deep learning

Deep Learning
B When you have lot B When you have

of annotated data limited data
B Where it is not clear ® When it is rather
what features work obvious what

features can
discriminate

80 DTU Compute, Technical University of Denmark Image Analysis 2024
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The level of the lecture

Far too easy - my hamster could understand it

Too easy - | need more

Suitable -  am generally learning what | want

Y  74%

Too hard - slow down please

Far too hard - my head is exploding

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Image Analysis
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The quizzes

Not enough quizzes - | want more more

Fine with the quizzes - no more no less

Argghh! These quizzes...l want less

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Image Analysis
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Next week

B Pixel classification
B Advanced classification

83 DTU Compute, Technical University of Denmark
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